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Abstract

A numerical study has been made of natural convection in an enclosure with perfectly

counducting horizontal end walls and finitely conducting baffles. Results obtained using the Boussinesq
model for density variation show good agreement with reported measurements of natural convection in
a partitioned enclosure. Except at low Rayleigh numbers, a separation bubble is observed behind the
baffle. The strength of the separation bubble increases while the strength of the main flow (moving up the
hot wall and down the cold one) decreases with increasing baffle conductivity. The average Nusselt number
for the enclosure is significantly smaller in the presence of the baffles. Except at low Rayleigh numbers
{where baffie conductivity has little influence) the Nusselt number values decrease with increasing baffle
conductivity.

INTRODUCTION

NATURAL convection in enclosures is of significant
interest in the areas of solar collector design, electronic

cooling, design of energy efficient buildings, etc. In,

view of this, the subject has received a fair amount of
attention in the literature. Ostrach [1] and Catton [2]
have reviewed the heat transfer literature pertaining to
enclosure convection.

More recently, heat transfer in partially divided
enclosures has received limited attention primarily
due to its application in the design of energy efficient
buildings. Probert and Ward (3] experimentally stud-
ied the heat transfer behavior in a partitioned enclos-
ure with aspect ratios of 18.2 and 26.4. Janikowski et
al. [4] extended the work in ref. [3] to investigate the
thermal resistance of an air filled enclosure with an
aspect ratio of 5 and fitted with vertical baffles
extending from the floor and ceiling. Greif and co-
workers have conducted a series of experiments [5-
7] to study the heat transfer behavior in an enclosure
of aspect ratio 0.5 and fitted with a downward-
extending partition. Experiments were generally car-
ried out with water as the working fluid and for
Rayleigh numbers in the range of 10!°~10'!. Duxbury
[8] studied the heat transfer behavior in enclosures
of aspect ratios between 5/8 and 5 with different
partition arrangements. His results indicate significant
heat losses from the side walls. Winters [9] performed
a finite-difference study of natural convection in a
vertical enclosure with an aspect ratio of 5/8 and
fitted with centrally located baffles. Although the
results in refs. [8,9] agree qualitatively, significant
quantitative differences were noted and were attri-
buted to the side wall heat losses in the experimental
setup in ref. [8] and the assumption of adiabatic side
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walls in ref. [9]. Lin and Bejan [10] carried out
an experimental and analytical investigation for a
rectangular enclosure (aspect ratio = 0.3) fitted with
a single baffle.

Recently, Chang and co-workers [11,12] have
reported detailed numerical computations of natural
convection in a square enclosure fitted with adiabatic
partitions extending from the floor and ceiling (Fig. 1).
Results were obtained for Rayleigh numbers in the
range of 10*-10® and radiation effects were also
considered. As a follow-up of the work in refs. [11, 12],
Bajorek and Lloyd [13] made an experimental study
of heat transfer in the same configuration (Fig. 1). A
typical comparison of the results in refs. [11-13] is
shown in Fig. 2. It is clear that the experimentally
determined Nusselt numbers are significantly higher
than the predicted values. To explain this discrepancy,
it should be noted that in the numerical calculations
[11,12], the end walls and partitions were assumed
to be adiabatic. In the experiments, Bajorek and
Lloyd [13] used Plexiglass side walls and baffles
which have a thermal conductivity nearly 25 times

“that of air. Thus, as pointed out by El-Sherbiny et al.

[14], adiabatic conditions are unlikely to be realized.
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Fi1G. 1. Schematic of a square enclosure fitted with two
baffies.



320 E. ZIMMERMAN and S. ACHARYA
NOMENCLATURE

¢,  specific heat of fluid T,  hot wall temperature
d thickness of the baffle u dimensional velocity in the x direction
g gravitational force U dimensionless velocity in the x direction
H  height of the baffle v dimensional velocity in the y direction
k thermal conductivity of fluid V¥V  dimensionless velocity in the y direction
k.,  conductivity ratio, k,/k x, X dimensional and dimensionless
k,  conductivity of baffle coordinate parallel to the horizontal
L dimensions of the square enclosure end walls
Nu  Nusselt number, hL/k vy, Y dimensional and dimensionless

Nusselt number along hot wall
average Nusselt number

average Nusselt number along hot wall
thermodynamic pressure
dimensionless pressure

Prandt] number, uc,/k

Ra Rayleigh number, gB(T, — TL3/va
local Rayleigh number,
gBATY?[va = Ra(y/Ly AT/AT, — T)
T  dimensional temperature

T.  cold wall temperature

TS 2’2‘2
FFlg

)
~

Greek symbols

coordinate normal to the horizontal
end walls.

thermal diffusivity

kinematic viscosity

density

dimensionless temperature
dimensionless temperature in baffle
dimensionless stream function.

-
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However, for a two-partition square enclosure, the
work in refs. [11,12] represents the only source for
detailed velocity and temperature information.

The work reported in this paper was initiated with
the intent of reporting numerical calculations that
would compare favorably with the measurements in
ref. [13] which report only mid-height temperature
profiles and local and average Nusselt numbers and
to provide detailed temperature, velocity and heat
transfer information over a range of Rayleigh num-
bers. Since adiabatic conditions are unlikely to be
realistic [ 14], the end walls are assumed to be perfectly
conducting while the baffles are considered to have

- == Bajorek and Lloyd [I3]
——= Chang [12]

o5 L 4
104 105 108

Ra

F1G. 2. Average Nusselt number comparison between the
predictions in ref. [12] and measurements in ref. [13].

finite thermal conductivity. The assumption of per-
fectly conducting end walls is based primarily on an
earlier study by the authors [15] where the predictions
ina vertical enclosure with either adiabatic or perfectly
conducting end walls are compared with the measure-
ments reported by Krane and Jesse [16] where the
end walls were made of balsa wood backed with
insulation and have a thermal conductivity 27%
higher than that of air. This comparison is reproduced
in Fig. 3 which plots the predicted and measured
velocity profiles and Nusselt number distributions
and clearly confirms the superiority of the perfectly
conducting end wall assumption. For Plexiglass end
walls, the perfectly conducting end wall assumption
is likely to yield more realistic results in view of the
higher thermal conductivity of Plexiglass compared
to insulation backed balsa wood.

It should be clearly pointed out that the present
study differs from that reported in refs. [11,12], in
which the end walls and baffles are assumed to be
adiabatic. In this paper, as discussed above, in order
to obtain realistic predictions, the end walls are
assumed to be perfectly conducting and the baffles
are assumed to have a finite thermal conductivity
{which is varied as a parameter of interest) and no
numerical solutions have, heretofore been reported in
the literature, with these assumptions. As discussed
later in the paper, results obtained with the afore-
mentioned assumptions, agree reasonably well with
measurements, while corresponding calculations done
with assumed adiabatic end walls but finitely conduct-
ing baffles [23] exhibit much larger discrepancies.
These discrepancies are expected to be even larger if
the baffles are also assumed to be adiabatic as in refs.
{11,12].
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FiG. 3. Comparison of predicted and measured velocity and Nusselt number profiles at Ra = 1.89 x 10%

implications of the choi

GOVERNING EQUATIONS

The schematic of the physical situation of interest
is shown in Fig. 1. The dimensions of the baffle and
box are chosen to correspond with the physical
dimensions employed by Bajorek and Lloyd [13}.
Typical temperature differences in ref. [13], between
the hot wall (at T;,) and cold wall (maintained at room
temperature T,) are of the order of 155°C at a
Rayleigh number of 3.5 x 10°, With these temperature
differences, the temperature ratio (T, — TY/T. = 0.05
and therefore, the Boussinesq approximation, which
has been shown by Zhong [17] to be valid for
{7, — TYT. < 0.1, should correctly model the density
variation. The adequacy of the Boussinesq approxi-
mation is further examined here by comparison with
the predictions obtained using the ideal gas law to
calculate the density.

in addition to the Boussinesq approximation, the
flow is assumed to be steady, laminar and two-
dimensional. These assumptions, for the Rayleigh
numbers of interest in this study, have been verified
experimentally in a number of studies {18-20]. Radi-
ation effects, which are small for moderate tempera-

ce of end wall conditions.

ture differences, have not been included. With these
assumptions and the introduction of the following
dimensionless variables

X =x/L, Y= y/L
U = uf{v/L), V= v/y/L},
P = (p + pgyylp(v/L)*]

B=[T—(T + T2 — T

h

2

@
3
the governing differential equations that express the

conservation of mass, momentum and energy in the

fluid become
dU/OX + 8V/8Y =0 )

UaU/8X + VaU/oY = —3P/oX + d*U/eX?

+ B2U/eY? )

UBV/6X + VaV/3Y = —dP/dY + 3*V/aX?
+ V[0V + Ra-0/Pr  (6)
Ud0/oX + VOBJOY = (3%0/3X? + 826/aY?)/Pr. (1)
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In the baffle region, the velocities are zero and the
temperature in the baffle 0, is described by Laplace’s
equation

(@20,/0X* + 3*0,/2Y?) = 0. (8)

The energy balance at the baffle—air interface requires

oT o,
—k— ={ k=
< 6" )nlerface < P'n )nlerface
or

(I/Pr)(_ao/an)imerfnce = [(ks/k)/Pr]( _8()5/6n)inlerface

)
where k, represents the thermal conductivity of the
baffle and [(k,/k)/Pr] is the dimensionless baffle con-
ductivity. For convenience in notation, the conduc-
tivity ratio k. /k is denoted by k,.

The boundary conditions are zero velocity on all
four walls, dimensionless temperatures of 0.5 and
—0.5 along the hot and cold vertical walls, respec-
tively, and perfectly conducting (linear temperature
profile) horizontal end walls.

SOLUTION PROCEDURE

Equations (4)-(9) provide a complete mathematical
specification to the problem and are solved by a
control volume based, finite-difference calculation
procedure called SIMPLER (Semi Implicit Method
for Pressure Linked Equations Revised) which has
been described in detail by Patankar [21]. In this
method, the domain is discretised into a number of
control volumes (each associated with a nodal point)
such that a control volume face coincides with the
baffle—air interface. The finite-difference equations are
obtained by requiring that the conservation of mass,
momentum and energy be satisfied over each control
volume. To promote the conservative property, it is
required that the flux leaving a control volume
through a face must equal the flux entering the
adjoining control volume through the same face. To
avoid checkerboard pressure and velocity fields, a
staggered grid for velocity is used. The pressure—
velocity interlinkage is handled by a prediction—
correction approach in which the velocity is first
estimated by solving the momentum equations and
then updated by requiring that continuity be satisfied
in each control volume. The finite-difference equations
are solved iteratively by a line-by-line Thomas Algor-
ithm.

The presence of the baffle in the solution domain
is accounted for by the strategy suggested by Patankar
[22], in which equations (4)—(7) are solved in the
entire domain and the baffle is characterized as
a region of very high viscosity (say 10%°) and the
dimensionless baffle conductivity k /Pr. In view of the
very high viscosity and no-slip boundary conditions,
the velocities in the baffle region are nearly zero and
therefore, the convective terms in equation (7) drop
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out and the energy equation reduces to Laplace's
equation [equation (8)] in the baffle. The interface
energy balance [equation (9)] is also satisfied since
the baffle-air interface coincides with a control vol-
ume face and the dimensionless heat flux leaving the
fluid control volume through the interface must equal
the interface heat flux entering the baffle control
volume, i.e.

{ I/Pr)( - (‘:”/(‘:n)imerface = U\r/PrN - ‘T()m/‘(ﬁn)mlcrfacc'

A 40 x 40 non-uniform grid is used in the calcu-
lation with the grid point distribution carefully tail-
ored to yield numerically accurate results. The numeri-
cal accuracy of the results is verified by comparing
the 40 x 40 grid solutions with the corresponding
solutions obtained on an 80 x 80 grid. This compari-
son is shown in Fig. 4 and confirms the adequacy of
the 40 x 40 grid. Overall conservation of momentum
and energy are satisfied to within 1% with the 40 x 40
mesh.

RESULTS AND DISCUSSIONS

Results are presented in two parts. In the first part,
the predicted mid-height temperature profiles and hot
and cold wall Nusselt numbers are compared with
the measurements reported in ref. [13]. As will be
seen later, the agreement between measurements and
predictions is good thus validating the assumptions
made in this paper. The second part complements the
rather limited measurements in ref. [13] and provides
detailed velocity, temperature and heat transfer infor-
mation for an enclosure with finitely conducting
baffles and perfectly conducting end walls. The Ray-
leigh number Ra, baffle thickness (d/L) and conduc-
tivity ratio k, are the primary parameters of interest
in this study.

Comparison with measurements [13]

In ref. [13], the baffles were made of Piexiglass and
the dimensionless thickness (d/L) and height (H/L)
were 0.1 and 0.25, respectively. In this paper, results
are obtained for the same geometrical dimensions and
in the first part of this study, the conductivity ratio
k, is assigned a value representative of Plexiglass
material. Also, to test the validity of the Boussinesq
approximation, results are obtained using both the
Boussinesq model and the variable density model
(p = p/RT). Details regarding the dimensionless vari-
ables and governing equations in the vartable density
model are presented in refs. [15,23].

Figure 5 presents the predicted mid-height tempera-
ture profile and the mid-sectional velocity profiles
and also, the temperature distribution measured in
ref. [13]. Predictions include both the Boussinesq and
the variable density model solutions for both the
velocity and temperature and confirm the adequacy
of the Boussinesq approximation at the Rayleigh
number considered (Ra = 3.5 x 10°). The measured
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and predicted temperature profiles in Fig. 5 agree well
with each other with a 4.4% maximum discrepancy
between the two profiles. As further verification,
Zimmerman [23] made extensive calculations for
natural convection in a non-partitioned enclosure
using the experimentally measured end wall tempera-
tures by Krane and Jesse [16] as end wall boundary
conditions (to eliminate the uncertainty associated
with the end wall boundary condition). The compari-
son of the Boussinesq and the ideal gas law predictions
[23] for the velocity and temperature with the
measurements [16] show excellent agreement with
each other. The velocity profiles in Fig. 5 exhibit the
expected behavior with a boundary layer profile near
the hot and cold walls and a lower peak horizontal
velocity compared to the peak vertical velocity.

Figure 6 compares the predicted and measured hot
wall Nusselt number distribution. In general, the
agreement is good. The predicted value for the average
hot wall Nusselt number at Ra = 3.5 x 10° is 4.3
while the corresponding measured value is 4.65. The
present predictions exhibit much closer agreement
with the measured values than the predictions in ref.
[11] where the baffles and end walls were assumed
to be adiabatic.

Additional results for an enclosure with conducting end
walls

In this section, results are presented for Rayleigh
numbers in the range of 10*-3.55 x 10°, conductivity

1.C
C.9
¢.8
c7
06

y/L 05

ratios of 2 and 500 and dimensionless baffle thick-
nesses of 0.05, 0.1 and 0.2. Results presented include
streamline and isotherm plots, mid-sectional velocity
and temperature information and local and average
Nusselt numbers.

Streamline and isotherm plots. Streamlines and iso-
therms are shown in Figs. 7-10 with the streamlines
plotted in uniform increments of Ay (from a lower
bound of ¥, to an upper bound of i,) and the
isotherms plotted in uniform increments of 0.05 (from
—0.5 at the cold wall to 0.5 at the hot wall). The
values of ¥, ¥, and Ay are indicated on the top right
corner of the figure as (¥,,y, )A¥. The maximum
streamfunction value y, is also shown on the figure.

At a Rayleigh number of 10% the isotherm plot
(not shown) is nearly conduction like and the natural
convection flow is rather weak (Y, = 3.3). For both
conductivity ratios, the flow at Ra = 10* does not
separate behind the baffle. As the Rayleigh number
is increased to 10°, the flow for the higher baffle
conductivity (k, = 500) separates behind the baffle
(Fig. 7b) although, at k, = 2, a noticeable separation
bubble is not predicted. To explain this, it should be
noted that for k, = 500, the baffle temperatures are
expectedly closer (compared to the corresponding
temperatures for k, = 2) to the dimensionless end wall
temperature of zero (at x/L = 0.5) and therefore, at
the higher baffle conductivity, the upper baffie is
colder and the lower baffle is warmer relative to the
baffle temperatures at k, = 2. The cooled fluid off the
cold wall is heated to a higher temperature as it

C.4 Bajorek and Lioyd [I 3]

C.3

Predictions with Boussinesq Model
Predictions with Variable Density

Model
c.2
(U]
0.0 A A
7 8

F1G. 6. Comparison of predicted and measured [13] Nusselt numbers.
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negotiates the higher conductivity lower baffle (since
it is warmer) and therefore, at k, = 500, the warmer
flow at the lower baffle tip is more buoyant than the
corresponding flow at k, = 2. Since the tendency of
the flow to move downwards is less for the more
buoyant flow, flow separation is more easily effected
at the higher k, value. For this reason, a large
recirculation is noted behind the higher conductivity
baffle. A similar explanation applies to the separation
bubble behind the upper baffle.

As the Rayleigh number is increased to 3.55 x 10°
(Fig. 8), the strength of the flow field increases and
the separation bubbles grow in size, with separation
now occurring even behind the lower conductivity
baffle. As k, is increased from 2 (Fig.8a) to 500
(Fig. 8b), the size and strength of the recirculation
bubble increases since, as mentioned in the preceding
paragraph, the flow at the tip of the upward-extending
baffle is warmer and that at the tip of the downward-
extending baffle is colder for the higher baffle conduc-
tivity. However, the velocities in the main eddy (with
flow up the hot wall and down the cold one) are
reduced as k, is increased. This is because the increased
cooling by the upper baffle and the increased heating
by the lower baffle at the higher bafle conductivity
reduces the local wall to fluid temperature difference
AT and thus the local Rayleigh number
[Ra, = Ra(y/L)*AT/(T, — T.] at the leading edge of
the hot and cold walls. In view of the lower local
Rayleigh numbers, the strength of the buoyancy
induced flow along the hot and cold walls is reduced.

OS5
04 r

03

The influence of the baffle thickness (d/L) is shown
in Figs. 9 (d/L = 0.05) and 10 (d/L = 0.2) and indicates
that the qualitative behavior of the flow field and
isotherm distributions are similar at both baffle thick-
nesses. However, significant quantitative differences
can be noted. As (d/L) is increased from 0.05 to 0.2,
the separation bubble behind the baffle (k, = 500)
decreases in strength while the velocities of the main
flow (up the hot wall and down the cold wall)
increase in magnitude. These effects are linked to the
counteracting influences of increased viscous resist-
ance and increased pre-cooling and pre-heating by
the upper and lower baffles respectively at the higher
(d/L) value.

The features of the flow pattern are in general
agreement with the flow visualization experiments by
Duxbury [8] and the numerical predictions of Winters
[9] for an enclosure with a single baffle. Flow visualiz-
ation studies have not been reported in the experimen-
tal studies on enclosures with two baffles [3-6, 13}
and therefore, a direct comparison is not possible.

Temperature and velocity profiles. The mid-height
temperature profiles for a baffle thickness d/L = 0.1
are shown in Fig. 11. At a Rayleigh number of 10%,
the temperature profile in view of the weak convective
motion, is nearly linear and the baffle conductivity
has a negligible effect on the temperature values. As
the Rayleigh number is increased the temperature
profile takes on a boundary layer behavior with large
near-wall gradients and small temperature variations
in the core. However, the core temperatures exhibit

-0+
oz Ro= 10%, k,
—o— Ra= 104, k, =500
"03 - Ro:10%, k, =
—s— Ra=10°, k; =500
04y, -+- Ro=355x10% k=2
—— Ra:=3.55x10%, k=500
-0.5 | R WO U | L 1 i 1 1
00 Ol 02 03 04 05 06 07 08 09 10

x/L

F1G. 11. Temperature profiles, d/L = 0.1, y/L = 0.5.
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greater non-uniformity as compared to the core
temperature profile in an enclosure without baffles.
This is due to the mixing of the fluid heated by the
lower baffie with the fluid cooled by the upper one,
with the mixing in the cooler side of the enclosure
tnfluenced more by the colder fluid and that on the
hot wall side influenced more by the warmer fluid.
Thus, core temperatures near the cold wall are lower
and those near the hot wall are higher than the
corresponding temperatures in an enclosure without
baffles. The non-uniformity of the core temperature
is more pronounced at the lower conductivity value
since the lower baffle is colder and the upper baffle
is warmer at k. = 2 compared to the temperatures at
k. = 500.

The vertical velocity profile at y/L = 0.5 and the
horizontal velocity profile at x/L = 0.5 are shown in
Fig. 12. Since the profiles are symmetrical, only half
the profile is shown. Velocities expectedly increase
with Rayleigh number and exhibit a boundary-layer
behavior along the hot and cold walls at high Rayleigh
numbers (3.55 x 10%). In general, the mid-sectional
velocity profiles exhibit a weak dependence on the
conductivity ratio with the magnitude of the V-
velocity in the boundary layer lower and that in the
core higher at k, = 500. The lower boundary-layer
velocities at the higher baffle conductivity are, as
mentioned earlier, attributable to the increased pre-
cooling by the upper baffle and pre-heating by the
lower baffle of the fluid directed towards the cold and
hot walls respectively. Since mass flow rates across a
cross-section must rematn constant, increased bound-
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Table 1. Average Nusselt numbers

Ra k, d/L =0.05d/L=0.1d/L =02 No baffles
e 12 s
I A VA
S X 10 g0 Gin  an aor 4

ary layer velocities are associated with depressed core
velocities.

Nusselt number. The Nusselt number along the hot
and cold walls is defined as

Nu = — L{0T/0x)yar/(Ty — T0). (10)

The average Nusselt number Nu for the various cases
studied is presented in Table 1. The average Nusselt
number for an enclosure with no baffles and conduct-
ing end walls is also presented in the table for
comparison purposes.

As may be expected, the heat transfer across the
enclosure {or the average Nusselt number) is less in
the presence of baffles and decreases with increasing
baffie thickness. For d/L = 0.1, the heat transfer across
the enclosure at Ra = 10* is reduced by approximately
30% due to the presence of the baffles and the
average heat transfer is relatively unaffected by the
conductivity ratio k,. At the higher Rayleigh number
of 3.55 x 105, the reduction in the average Nusselt
number due to the baffles is approximately 16% for
k., =500 {(and d/L = 0.1} and about 7% for k. = 2.

200 1 T T T T T
150 F LEGEND
See Figure it
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0 405
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- €0 404
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v
-200f g 1o
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Fi1G. 12, Horizontal velocity (at x/L = 0.5) and vertical velocity {at y/L = 0.5) profiles, d/L = 0.1.
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Thus, at the higher Rayleigh number, the conductivity
ratio has a significant influence on the average heat
transfer with an additional 7-10% reduction in the
Nu value when the baffle conductivity ratio is higher
(k, = 500). This result, somewhat surprising at first
glance, is due to the increased pre-heating and pre-
cooling effects of the more conducting lower and
upper baflies, respectively, which in turn is responsible
for smaller wall to fluid temperature differences. It
should be noted that the 16% reduction in Nu for
the more conducting baffle at Ra = 3.55 x 10° is in
excellent agreement with the measured reduction of
17% in ref. [13] at Ra = 3.5 x 10°.
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In order to further delineate the importance of
using perfectly conducting end wall conditions, Table
2 has been compiled from the calculations in ref. [23]
and the results reported in refs. [13, 16, 24]. Clearly,
in all the cases listed, the predictions with the perfectly
conducting end walls are closer to the measured
values in refs. [13,16] and the correlation for the
perfectly conducting end wall in ref. { 24]. Correspond-
ing predictions with adiabatic end walls show signifi-
cantly larger deviations from the measured values.

The local Nusselt number distribution along the
hot wall is plotted in Fig. 13 and again shows lower
local heat transfer rates for the enclosure with the

LEGEND
See Figure il

A

Nuy,

F1G. 13. Nusselt number distribution along hot wall, d/L = 0.1.

Table 2. Comparison of measured and predicted Nusselt numbers

Non-partitioned enclosures

Ra Present predictions Reported correlations or measurements
Ref. [24]
Perfectly conducting  Adiabatic (Perfectly conducting Ref. [24]
end walls end walls Ref. [13]* Ref. [16] end walls)t (Adiabatic end walls)?
10° 3.37 453 3.89 — 3.03 4.41
1.89 x 10° 4.07 547 471 3.63 3.64 5.3
3.55 x 10° 491 6.58 5.68 — 4.35 6.33
Partitioned enclosures
Ra Present predictions Reported correlations
Perfectly Adiabatic
conducting end walls Ref. [133§
k=2 k=251 k =2 k, = 25|
10° 2.9 — 395 3.15
3.5 x 10° e 43 — 4.65
3.55 x 10° 4.58 6.09 4.78
* Nu = 0.111(Ra/Pr)°3°.
+ Nu = 0.114(Ra)®*%.
1 Nu = 0.166(Ra)® 2%,
§ Nu = 0.063(Ra/Pr)®33,

I k, = 25 corresponds to Plexiglass.
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more conducting baffle. The plot shows the same
trends as the Nusselt number distribution in an
enclosure with no baffles except, and as expected, the
peak Nusselt numbers in the presence of baffles occur
at a higher (y/L) value.

CONCLUDING REMARKS

A numerical investigation is made of natural con-
vection in a partitioned enclosure with conducting end
walls. Results are compared with the measurements of
Bajorek and Lloyd [13] and indicate that for moder-
ate temperature differences, predictions obtained with
the Boussinesq approximation and perfectly conduct-
ing end wall assumption, compare well with measure-
ments while results with the adiabatic end wall
condition, show significant deviation. At high Ray-
leigh numbers, the flow behind the baffle separates
with the size and strength of the separated bubble
increasing with the baffle conductivity. The strength
of the main flow (moving up the hot wall and down
the cold one) however decreases with increasing
conductivity of the baffle. The core temperature profile
exhibits greater non-uniformity as compared to the
temperature variations in an enclosure without baffles.
The average Nusselt number for an enclosure is
significantly smaller in the pressure of baffles and
decreases with increasing baffle conductivity.
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Free convection heat transfer in a partially divided vertical enclosure with conducting end walls

CONVECTION THERMIQUE NATURELLE DANS UNE ENCIENTE VERTICALE
PARTIELLEMENT DIVISEE, AVEC DES PAROIS EN BOUT CONDUCTRICES

Résumé—On étudie numériquement Ja convection naturelle dans une enceinte avec des parois en bout
parfaitement conductrices et des baffles normalement conductrices. Les résultats obtenus par le modéle de
Boussinesq pour la variation de densité montrent un bon accord avec les mesures faites sur une enceinte
avec pariition. Except¢ aix faibles nombres de Rayleigh, une bulle de séparation est observée derriére le
baffle. L'intensité de cette bulle augmente tandis que le mouvement principal s’atténue (ascension i la paroi
chaude et descente 4 la paroi froide) lorsque la conductivité de baffle augmente. Le nombre de Nusselt
moyen pour ’enceinte est significativement plus faible en présence des baffles. Excepté aux faibles nombres
de Rayleigh (lorsque la conductivité de baflle a une faible influence), les valeurs du nombre de Nusselt
diminuent quand la conductivité de baffle croit.

WARMEUBERGANG BEI FREIER KONVEKTION IN EINEM TEILWEISE
UNTERTEILTEN SENKRECHTEN HOHLRAUM MIT LEITENDER DECK- UND
BODENWAND

Zusammenfassung—Eine numerische Untersuchung der natiirlichen Konvektion in einem Hohlraum mit
unendlich gut leitender horizontaler Deck- und Bodenwand und Leitblechen mit endlicher Wirme-
leitfahigkeit wurde durchgefithrt. Die mit Hilfe der Boussinesq-Approximation fiir die Dichtednderung
ermittelten Ergebnisse zeigen eine gute Ubereinstimmung mit Messungen der natiirlichen Konvektion
in unterteilten Hohlrdumen, wie sie in der Literatur zu finden sind. Hinter den Leitblechen wird eine
Abloseblase beobachtet (auBler bei kleinen Rayleigh-Zahlen). Die Stirke dieser Abldseblase nimmt mit
der Wirmeleitfahigkeit der Leitbleche zu, wihrend die Stdrke der Hauptstrémung (aufwirts an der heilen,
abwiirts an der kalten Wand) abnimmt. Die mittlere Nusselt-Zah! im Hohiraum mit Leitblechen ist viel
kleiner als ohne Leitbleche. Die Nusselt-Zahl nimmt mit zunehmender Wérmeleitfahigkeit der Leitbleche
ab—auler bei den kleinen Rayleigh-Zahlen (wo die Leitfahigkeit einen geringen EinfluB hat).

CBOBOJAHOKOHBEKTUBHBIN MEPEHOC TEIJIA B YACTUYHO TEPETOPOXEHHOM
BEPTUKAJILHOM ITOJIOCTU C MPOBOJSIIMMU TOPUEBLIMHU CTEHKAMHM

Annotauus—IIpopeneHo YHCIEHHOE HCC/IEAOBAHHE €CTECTBEHHOM KOHBEKUMH B MOJOCTH ¢ MUEAILHO
OpPOBOJSIIMMH TOPH3OHTANBHEIMH TOPHEBHIMH CTEHKAMH H C HEPEropoKaMi, HMEIOIHMH KOHEYHYIO
TEMRONPOBOAHOCTD. JIaHHbIE, MONYUCHHBIE C CTIONB30BaHNeM Moaeny Byccnrecka /19 ONHCAHUA HIME-
HCHHA IIOTHOCTH, XOPOLIO COTIIACYIOTCA ¢ onyOIHKOBAHHBIMA DE3YIbTATAMHA H3MEPEHHIl eCTeCTBEHHOM
KOHBEKIIHH B TIOJIOCTH, Pa3ficICHHOM NeperopokaMu. 3a HCK/IFOUEHHEM CIyYaes Manbix ymcen Pases 3a
neperopoakoif HabmoaeTcs BHXpeBoe TeueHHe. MHTEHCHBHOCTD 3TOTO TEYCHMS yBEJIMYMBACTCH, B TO
BpeMs KaK MHTEHCHBHOCTh OCHOBHOIO ITOTOKA (IBMXYLIEroCs 1O HATPETOH CTEHKE BBEPX M MO XOJIOIHOR
CTEHKEe BHH3) YMEHLIIAETCA C YBEIHYEHHEM TeIUIONPOBOAHOCTH NMeperopoixu. Cpensee 3HaYeHHE 4HCIA
HyccenbTa Ans NOJOCTH 3HAYHTENLHO HHKE NPH HAJMYHE TIEPErOPONOK. 3a HCKIIOYCHHEM Clyvacs
MaJTbIX umces Pases (KOTAa TEmIONpPOBOZHOCTD NMEPETOPOAKH OKa3sbiBaeT nebosibimoe BAMAHHE), YUCIA
HyccenbTa yMEHBIIAKOTCH C POCTOM TEIUIONPOBOAROCTH NEPErOPOaoK.
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